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ABSTRACT 
 

Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the 

prion protein (PrP), and there are currently no therapeutic options. PrP ligands could theoretically antagonize 

prion formation by protecting the native protein from misfolding or by targeting it for degradation, but no 

validated small-molecule binders have been discovered to date. We deployed a variety of screening methods 

in an effort to discover binders of PrP, including 19F-observed and saturation transfer difference (STD) nuclear 

magnetic resonance (NMR) spectroscopy, differential scanning fluorimetry (DSF), DNA-encoded library 

selection, and in silico screening. A single benzimidazole compound was confirmed in concentration-response, 

but affinity was very weak (Kd > 1 mM), and it could not be advanced further. The exceptionally low hit rate 

observed here suggests that PrP is a difficult target for small-molecule binders. While orthogonal binder 

discovery methods could yield high affinity compounds, non-small-molecule modalities may offer independent 

paths forward against prion disease. 

 

INTRODUCTION 
 

Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the 

prion protein, or PrP1. No effective therapeutics currently exist for prion disease, but PrP is a genetically and 

pharmacologically validated drug target2. PrP-lowering antisense oligonucleotides (ASOs) are in preclinical 

development3–5, and PrP-binding antibodies have been tested preclinically6 as well as clinically in a 

compassionate use context7. Here, we sought to augment the therapeutic pipeline by discovering small 

molecules that bind PrP. 

 

In principle, small molecules could prevent or treat prion disease by protecting PrP from misfolding or by 

lowering its abundance. By sterically blocking interactions with misfolded PrP, or simply through the free 

energy of binding, a chaperone might stabilize PrP against misfolding, following precedents in transthyretin 



amyloidosis8,9 and cystic fibrosis10,11. Proofs of principle for this approach include the efficacy of monoclonal 

antibodies to PrP to clear prion infection in cell culture12,13 and in peripheral tissues of animals14 as well as the 

stability of PrP “stapled” with non-native disulfide bonds15. Alternatively, small-molecule binding events can 

sometimes directly lead to protein degradation16,17, and if not, a binder could serve as a starting point for 

engineering a bifunctional molecule to specifically target PrP for degradation18,19. Although at present most 

bifunctional degrader strategies are best suited to intracellular targets owing to reliance on cytoplasmic E3 

ubiquitin ligases, recent studies suggest alternate routes to targeted degradation of cell surface proteins20 such 

as PrP.  

 

Decades of effort have not yet yielded a small-molecule PrP binder suitable for advancement as a drug 

candidate21. The development of phenotypic screening for antagonists of misfolded PrP accumulation in 

cultured cells22 enabled the identification of several compounds effective in vivo23–26, but advancement of these 

compounds has been hindered by lack of activity against human prion strains and unclear mechanisms of 

action26–29. Meanwhile, several compounds shown to interact with PrP through biophysical assays have 

demonstrated antiprion activity in a range of experimental systems30–34. However, these compounds likewise 

appear to lack clinical promise as none are simultaneously specific35, potent, and drug-like. Certain metallated 

porphyrins36,37 interact with PrP with affinity values comparable to their effective concentrations in cell 

culture36,37, and some exhibit in vivo activity in certain paradigms38. Similarly, a range of anionic polymers33,39–42 

also bind PrP and show in vivo antiprion activity in certain contexts41,43,44. However, these binding events may 

not be monomeric45 nor specific to PrP35,46. Still other compounds with demonstrated antiprion activity exhibit 

interaction with PrP only at concentrations orders of magnitude above their effective concentration in cell 

culture47,48. 

 

Because PrP’s biology does not lend itself to enzymatic or activity assays, we chose to apply several non-

activity-based screening modalities: 19F-observed and saturation transfer difference (STD) NMR fragment 

screening, differential scanning fluorimetry (DSF), DNA-encoded library (DEL) selection, and an in silico 

screen. We selected a fragment-based drug discovery paradigm as a starting point based on PrP’s small size 

and lack of obvious binding pockets49, and the success of this method in identifying ligands for targets 

refractory to other approaches50. Our campaign utilized 19F NMR and STD NMR because these approaches 

are sensitive to weak affinity binders51, have low false positive rates52 and allow searching a large swath of 

chemical space through small, highly soluble fragments that can later be optimized into larger, higher affinity 

molecules53. DSF was employed to find compounds that directly influence the thermal stability of PrP. This 

technique quantifies protein thermal stability by measuring fluorescence of a solvatochromic dye (SYPRO 

Orange) as a function of temperature as it binds to unfolded regions of a protein54. In principle, DSF hits should 

have the desired property of stabilizing the target protein. DNA-encoded library (DEL) selection uses a pool of 

thousands to trillions of individually DNA-barcoded molecules that are added to an immobilized recombinant 

protein. Nonspecific molecules are washed away, and putative binders are eluted, PCR amplified, and 

subjected to next-generation DNA sequencing for identification. We used a DEL of peptide macrocycles55, 

which display better stability and have a lower entropic cost of binding compared to linear peptides, making 

them suitable for targeting surfaces of proteins56,57. Finally, we employed the artificial intelligence-based in 

silico screening method, AtomNet®58, which uses a protein structure-based, convolutional neural network to 

predict molecular binding affinities. This technique was recently used to discover a selective binder and 

degrader of Miro159. 

 

RESULTS 
 

Fragment-based drug discovery through NMR screening 

From five commercial and internal sources (Figure 1A) we selected 6,630 low molecular weight, high solubility 

fragments for a fragment-based drug discovery campaign. The compounds in these libraries were mostly small 

(<300 Da) and had a range of cLogP values and hydrogen bond donor and acceptor sites that mostly fell within 

the Rule of Three60 for fragment-based screening (Figures 1B-D). Fragments were screened against either 



HuPrP23-231 or HuPrP90-231 using pooled, 19F ligand-observed or STD NMR methods as a primary screen, 

singleton STD NMR for re-testing, and protein-observed 1H-15N TROSY NMR for validation (Table 1).  

 

 
Figure 1. Physicochemical properties of fragment libraries screened. A) Composition of fragment 

libraries. B) Scatter plot of log(P) versus molecular weight (MW) for all fragments screened against PrP using 
19F or STD NMR. C and D) Number of hydrogen bond donors (HBD) or hydrogen bond acceptors (HBA). 

Orange denotes compliance with the “Rule of Three” 60 and black denotes noncompliance.  

 

Library name 
Compounds 

screened 
Pools with 

hits 
Retested 
by STD 

Retested 
by TROSY 

Validated 
hits 

Broad Institute 19F library 785 14 14 5 0 

Broad Institute 1st gen STD library 1,116 16 15 4 0 

Broad Institute 2nd gen STD library 1,823 43 55 34 1 

Schreiber chiral collection 381 1 5 0 0 

ChemBridge High Solubility Subset 2,525 31 149 37 0 

Total 6,630 105 238 80 1 

Table 1. Summary of NMR fragment screening. “Compounds screened” lists the total number of compounds 

in a given collection of molecules. “Pools with hits” indicates the number compound pools with observed hits. 

“Retested by STD” indicates the number of individual compounds that were retested for STD signal from each 

hit pool. “Retested by TROSY” shows the number of compounds that gave an STD signal and were therefore 

advanced to 2D TROSY NMR. 

 

Of 6,630 compounds tested, 238 initial hits were re-tested as singletons by STD NMR, of which 80 were further 

tested by TROSY NMR. A single compound 5,6-dichloro-2-methyl-1H-benzimidazole (1) gave a reproducible 

STD signal in the presence of PrP (Figure 2A) and induced chemical shift perturbations (CSPs) in the TROSY 

spectrum of HuPrP90-231 (Figures 2B-C, S1, and S2A). Mapping these residues onto an NMR structure of 

HuPrP (PDB 1HJM)61 revealed no discernable pocket, with shifts scattered across the structure (Figure 2D). 

Nonetheless, we observed similar resonance shifts in the full-length protein HuPrP23-231, suggesting that this 

binding is not an artifact of using a truncated construct (Figure S2A), and CSPs were confirmed to be dose-

responsive for several residues (Figures 2E and S2B), and the compound caused a small (~0.2°C) but 

significant decrease in melting temperature by DSF (Figure S2D). 

 

Because the CSPs caused by 1 are so small, we wanted to be certain that this compound was not perturbing 

HuPrP due to nonspecific colloidal aggregation. To test whether 1 is causing CSPs due to aggregation, 15N-

HuPrP90-231 was incubated with 1 in the presence or absence of nonionic detergents Triton X-100 or Tween-

20. The CSPs resulting from 1 were preserved in the presence of detergent, suggesting that 1 is not an 

aggregator (Figure 2F). To assess compound aggregation by an orthogonal method, we used the well-



established AmpC β-lactamase inhibition assay62. AmpC is inhibited by small molecules that form aggregates, 

and these aggregates can be disrupted by addition of detergent. No significant inhibition of AmpC was 

observed with 1 even at 500 µM concentrations, while the positive control compounds rottlerin and anacardic 

acid (AA) showed inhibition at 10 µM that could be relieved upon detergent addition (Figure 2G). Analogs of 1 

(compounds 2-10) were also tested; the majority of them did not inhibit AmpC, and none inhibited AmpC as 

well as the positive controls. Collectively, these data argue that 1 is not an aggregator and does not cause PrP 

CSPs via aggregation.  

 

The small magnitude of CSPs and lack of saturation at concentrations up to 0.75 mM suggested that 1 has a 
Kd for PrP in the millimolar range, too weak to interrogate by many non-NMR orthogonal biophysical assays. In 
an attempt to find a stronger binder, we tested 54 analogs of 1 from commercial sources and the Broad 
Institute’s internal library by STD NMR and TROSY (Table 2, Table S1, and Figure S3). Of the 20 compounds 
most similar to 1, 11 demonstrated positive STD and TROSY signal (Table 2), however, none of the analogs 
had TROSY CSPs larger than 1 by visual inspection, and thus they were not subjected to further biophysical 
assays. Despite efforts to soak unliganded PrP crystals with 1 and 20 of its analogs, no electron density 
attributable to a compound was identified (Table S1).  



 
Figure 2. Validation and characterization of a benzimidazole fragment hit. A) STD NMR spectra of 1 (5,6-

dichloro-2-methyl-1H-benzimidazole) with and without HuPrP90-231. STD spectra are scaled to 16X the 

reference spectra. B) TROSY spectrum of 15N-HuPrP90-231 with DMSO (black) or 0.75 mM 1 (red). Peaks 

that shift greater than 0.015 ppm are denoted with the residue number. C) Normalized chemical shift 



perturbations upon addition of 0.75 mM compound 1. D) Residues that shift more than 0.015 ppm were 

mapped onto the NMR structure of PrP (PDB 1HJM)61. E) Concentration dependent CSPs of residues Q212, 

M129, and Y218 upon addition of 1. F) 1H-15N TROSY chemical shifts in the presence of 0.75 mM 1 with and 

without detergents. G) AmpC inhibition assay of the 1 and its analogs. Rottlerin (10 µM), anacardic acid (AA, 

10 µM), and tetraiodophenolphthalein (TIPP) are prototypical aggregators. Adding detergent to small-molecule 

aggregates dissociates them and attenuates inhibition of AmpC. *, significance cutoff between detergent and 

non-detergent tests was p < 0.01 after correction for multiple comparisons, data are mean ± SD of four intra-

run technical replicates performed on same microplate.  

 

 

    

Compound R1 R2 R3 R4 X STD TROSY 

1 Cl Cl Me H N + + 

2 Me Me Me H N + - 

3 F F Me H N - ± 

4 H CN Me H N - - 

5 Cl Cl OH H N - ± 

6 Cl Cl H H N + + 

7 Cl H Me H N - - 

8 Cl Cl Et H N + + 

9 Cl Cl Me Et N+-Et - ± 

10 Cl Cl Me Me N + + 

11 Br Cl H H N + ± 

12 Br Br H H N + ± 

13 Cl Cl CH2OH H CH + ± 

14 Cl Cl H H CH + ± 

15 Cl Br H H CH + ± 

16 Cl OMe H H CH ±  

17 OMe Cl H H CH -  

18 Cl F H H CH -  

19 F Cl H H CH ±  

20 Br Cl H H CH + ± 

Table 2. Analogs of compound 1 tested by STD and TROSY NMR. Analogs of 1 were initially tested by 

STD NMR and positive STD hits were assayed by TROSY.  + indicates positive STD or TROSY signal; - 

indicates no STD or TROSY signal; ± indicates borderline positive signal. Blank cells indicate that the analog 

was not tested. All spectra were assessed by visual inspection.  

 

Thermal shift screening 

We tested a library of 30,013 compounds from the Novartis Screening Set for External Collaborations (SSEC) 

in singleton for thermal stabilization of PrP using DSF (Figures 3 and S5A-B). An ideal DSF screen would 

possess a high signal-to-baseline fluorescence ratio, tightly distributed melting temperatures in the apo 

condition, and a ≥10:1 molar ratio of soluble ligand to protein54. We varied a range of assay parameters 

including protein concentration, dye concentration, assay volume, use of HuPrP90-231 or HuPrP23-231, and 

buffer conditions including buffering agent, metals, and DMSO concentration (Figure S4). We obtained 

acceptable melt curves only at high protein concentrations (Figure S4). Our final screening conditions achieved 

a ~5:1 signal-to-baseline fluorescence and a 0.06 °C median absolute deviation (MAD) with 30 µM HuPrP90-



231; median Tm was 68.5 °C (Figure 3A). Compounds were screened at 100 µM for a >3:1 ligand-to-protein 

ratio, though we lack empirical data on their solubility over the temperature ramp. We chose hit compounds 

that either positively or negatively affected the melting temperature (Tm) of PrP based on separate criteria (see 

Methods). An internally developed pipeline was used to perform Boltzmann fitting of the fluorescence data and 

call Tm values. Irregular melt curves were automatically flagged and discarded. Two hit criteria were chosen for 

positive Tm shifters: 1) a statistical cutoff of greater than 3*MAD of the DMSO control wells (0.17 °C) and 2) an 

initial fluorescence of less than 6 to eliminate compounds that have intrinsic fluorescence or distort the melt 

curve. Because there were so many negative shifters, stricter hit cutoffs of −0.7 °C > ΔTm > −9 °C were 

applied. Even though negative shifters are predicted to destabilize PrP, one hypothesis is that such 

compounds bind a partially folded or destabilized form of PrP and could exhibit antiprion properties63. 

Compounds that passed our hit criteria were retested by DSF in triplicate (Figure 3C). Here, we applied stricter 

hit cutoffs (see Methods) due to throughput limitations of our orthogonal heteronuclear single quantum 

coherence spectroscopy (HSQC) NMR assay. The 183 reproducible positive hits were passed through 

frequent hitter and PAINS filtering64, narrowing the list to 117 compounds, of which we were able to test 93 for 

PrP binding by HSQC using 15N-HuPrP90-231. Even though the melt curves of PrP with these compounds 

were often very robust and reproducible (Figure 3D), none of the compounds tested by HSQC led to PrP CSPs 

at 100 µM concentration (Figures 3E-F). This suggested that the observed thermal shifts were not mediated by 

binding PrP, and were likely artifacts. In support of this interpretation, when we tested eight of the validation 

screen hits by an orthogonal thermal shift method, differential scanning calorimetry, we were unable to 

reproduce the change in melting temperature (ΔTm) observed in DSF (Figures S5D-E). 



 



 

Figure 3. Thermal shift screening. A) A box plot of the HuPrP90-231 median Tm (blue dash) for the DMSO 

controls from each of the 86 384-well plates screened. These values are relative to the median from all plates 

combined. Light blue rectangles around each median represent ±3*MAD. B) Scatter plot of ΔTm data from the 

initial screen with red dots indicating hits that were screened in triplicate. Red dots were compounds called as 

hits (see Methods for details). Grey dots were compounds that were flagged for having melt curve analysis 

errors. Black dots are compounds that did not meet our hit calling threshold but were not flagged. Compounds 

that resulted in PrP shifts of greater than or less than one degree were plotted at +1 or −1, respectively. C) 

Scatter plot of ΔTm values from primary screening versus triplicate screening data. D) Fluorescence melt 

curves of HuPrP90-231 with DMSO and a positive ΔTm shifter (fluorobenzamide shown in panel F). n = 128 for 

DMSO and n = 4 for test compound. E) HSQC spectrum of 15N-HuPrP90-231 with hit (fluorobenzamide shown 

in panel F; 100 µM). F) Chemical structure of selected fluorobenzamide hit, boxed in red in panels B and C. 

 

Screen Compounds Total hits Positive hits Negative hits 

Primary (singleton) 30,013 1,129 492 637 

Validation (triplicate) 1,129 282 176 106 

HSQC 84 0   
Table 3. Summary of thermal shift screening results. “Compounds” provides the total number of 

compounds tested in that screening step. “Positive hits” and “Negative hits” list the number of molecules that 

shifted the Tm of HuPrP90-231 positively or negatively, respectively.  

 

DNA-encoded library selection 

We performed a selection using HuPrP90-231 with a DEL library of 256,000 macrocycles. Barcode rank 

abundance in the unenriched library was plotted against enrichment observed in the PrP condition versus a no-

protein control condition, revealing enriched compounds across three structural scaffolds (Figure 4A). The 

*KRD scaffold was judged to be a likely covalent binder and was not pursued further. Representative 

compounds from the CC*S and *CJS series were resynthesized off-DNA (Figures 4B-C), as both cis and trans 

isomers, for validation. None of these compounds produced appreciable CSPs against 15N-HuPrP90-231 using 

TROSY at 200 µM, suggesting that these hits were either false positives or have affinities too weak to be 

detected by NMR (Figures 4D-E). 



 
Figure 4. Selection of PrP binders from a DNA-encoded macrocycle library. A) Enrichment plot of 

macrocycle DEL compounds versus input rank. *KRD series compounds (grey) are frequent hitters. B and C) 

Structures of the DEL hits OCJS and CCTS synthesized off-DNA. DEL macrocycles are synthesized as 

stereoisomers on-DNA so each cis/trans isomer pair was synthesized off-DNA for testing (c, cis; t, trans). D 

and E) TROSY spectra of 15N-HuPrP90-231 with the cis and trans isomers (200 µM) of OJCS and CCTS. 

 

In silico screening 

We used Atomwise’s AtomNet® convolutional neural network method58 to search for compounds that bind PrP 

at a specific site. Since there are no reported structures of human PrP bound to a lead-like ligand, we instead 

used the reported structure of mouse PrP bound to promazine (PDB 4MA7)65 to create a homology model of 

human PrP also bound to promazine between helix 2 (α2) and the two beta strands (β1 and β2) (Figure 5A). 

The regions that were modeled share a high degree of sequence identity with only 12 amino acid differences 

over residues A117-R230 (mouse PrP numbering). The promazine binding site was screened against 

6,922,894 molecules. After additional filtering, the top 81 compounds (Table S2) were selected as predicted 

binders and assayed for binding using both DSF and STD NMR. By DSF, none of the compounds (90 µM) 

increased the Tm of PrP more than three standard deviations (0.79 °C), and none of the compounds (100 µM) 

showed an appreciable STD signal in the presence of HuPrP90-231 (Figures 5B-C). 



 
Figure 5. In silico screening. A) Homology model of HuPrP with ligand bound (promazine) that was used for 

neural network in silico screening. B) DSF ΔTm values for all 81 Atomwise compounds with HuPrP90-231. 

Compounds that resulted in PrP shifts of less than one degree were plotted at −1. Error bars represent 

standard deviation of three measurements made on the same day using the same batch of protein-dye mix. 

SD of the DMSO conditions (n = 32 technical replicates per plate) was 0.26 °C. C) STD NMR of selected 

compounds that had a ΔTm > 0.05 °C by DSF. STD spectra are scaled to 5X the reference spectrum intensity. 

 

 

DISCUSSION  
 

We pursued four different screening modalities aimed at discovering binders of the human prion protein. 

Despite the large number of molecules tested and complementary approaches used, we were unable to 



identify any hits suitable for advancement into medicinal chemistry. Our fragment screening campaign 

identified compound 1 (5,6-dichloro-2-methyl-1H-benzimidazole) and several analogs that weakly bind PrP and 

were validated with orthogonal NMR assays. However, the poor affinity of these compounds (> 1 mM) coupled 

with the absence of improved binding of chemical analogs effectively precluded their validation through non-

NMR methods, and none were pursued further. Meanwhile, our thermal shift, DNA-encoded library, and in 

silico screening approaches yielded no validated hits at all. 

 

A variety of target-specific technical challenges may have contributed to our inability to identify binders by the 

approaches employed here. Some reports indicate that the transfer of NMR saturation is weak for smaller 

proteins, which may have produced false negatives in our STD NMR screens66,67. SYPRO Orange dye 

fluorescence in the presence of unfolded PrP was weak, which necessitated DSF screening at 30 µM protein 

concentration; compounds were accordingly screened at 100 µM, but solubility limitations may have prevented 

saturable binding with a maximum thermal shift. Our in silico screen utilized a homology model based on a 

crystal structure of promazine bound to mouse PrP, but promazine has not been shown to bind human PrP in 

solution, and promazine analogs that exert antiprion activity in cells appear to do so through an orthogonal 

mechanism48. In general, without a positive control available, it is difficult to guide the optimization of screening 

assays. Taken as a whole, our experimental screens cannot be considered definitive given their modest scale. 

But considering the diverse methods and compound sets employed, our results may hint toward relative rarity 

of PrP binders in chemical space.  

 

Alternative screening approaches might also improve the probability of discovering a high affinity PrP binder. 

We used recombinantly expressed PrP from E. coli for our experiments, which lacks post translational 

modifications (PTMs) including two N-linked glycosylations and a GPI anchor. Purification of PrP from 

mammalian cells68 and insertion into nanodiscs69 or micelles might more faithfully recapitulate PrP’s PTMs and 

endogenous membrane environment, potentially yielding binding sites not present on recombinant PrP. 

Encouragingly, DEL screening has been used successfully with nanodisc immobilized proteins70. We could 

also extend our fragment-based drug design strategy by using chemoproteomics71 to directly assess PrP 

ligandability on the cell surface. Multiple approaches may be necessary, because targets with low NMR and 

thermal shift hit rates are reported to, on average, also have lower hit-to-lead development success rates72. 

 

Overall, despite various technical limitations, our inability to identify even weak binders through multiple 

orthogonal screening modalities is striking. The absence of obvious binding pockets on PrP’s structure, 

together with the predominance of indirect mechanisms of action revealed in phenotypic screening campaigns, 

have led to the perception that PrP is a difficult target for small-molecule discovery31. Our data may provide 

some support for this conclusion. On balance, our results motivate an emphasis on non-small-molecule 

technologies, such as oligonucleotide therapeutics, as means for targeting PrP, but do not rule out the 

possibility that small-molecule binders could be discovered through an expanded screening effort. 

 

 

  



METHODS 
 

Log(P) and H-bond donor/acceptor calculations 

SMILES strings were parsed to yield molecular weight, ALogP, and hydrogen bond donor and acceptor counts 

using RCDK73. 

 

Purification of HuPrP90-231 and HuPrP23-231 

Recombinant PrP glycerol stocks were a generous gift from Byron Caughey and Andrew Hughson (NIAID 

Rocky Mountain Labs). The purification protocol was adapted from published procedures74. Two 4 mL cultures 

of E. coli were started from a glycerol stock in Terrific Broth (TB) with kanamycin (25 µg/mL) and 

chloramphenicol (25 µg/mL) and incubated (6 h, 37 °C, 220 rpm). Those cultures were used to inoculate a 1 L 

autoinduction media (AIM) (Millipore 71300) culture made with TB plus kanamycin (25 µg/mL) and 

chloramphenicol (25 µg/mL) in a 4 L baffled flask and incubated (22 h, 37 °C, 180 rpm). E. coli were harvested 

by centrifugation (4,300 g, 12 min, 4 °C) into four bottles (250 mL each) and the pellets were frozen at −80 °C. 

The following amounts of reagents used are based on a single pellet from 250 mL of media. The cell pellet was 

thawed at room temperature, resuspended in Lysis Buffer (14 mL) (Millipore 71456-4) by vortexing, and 

homogenized with a tissue homogenizer (60 s, 50% speed) using disposable tips. The homogenate was 

incubated (20 min, r.t., end-over-end agitation) and 20 µL of the whole-cell lysate was saved and diluted 1:20 

(fraction “L”).  The lysate was clarified by centrifugation (16,000 g, 20 min, 4 °C) and 20 µL of the supernatant 

was saved and diluted 1:20 (fraction “S”). Lysis Buffer (14 mL) was added to the pellet, which was 

homogenized with the tissue homogenizer (50% speed, 60 s) and incubated (20 min, r.t., end-over-end 

agitation). 0.1X Lysis Buffer (~20 mL) was added to a total volume of 34 mL, and the homogenate was 

centrifuged (16,000 g, 15 min, 4 °C). 30 µL of the supernatant was saved (fraction “W”). The pellet was 

resuspended in 30 mL 0.1X Lysis Buffer using a tissue homogenizer (50% speed, 1 min, r.t.) and centrifuged 

(16,000 g, 15 min, 4 °C). 30 µL of the supernatant (fraction “W2”) was saved. 10.5 mL of Unfolding Buffer (8 M 

guanidine HCl in 100 mM NaPO4 pH 8.0) was added to the inclusion body pellet and homogenized with the 

tissue homogenizer (50%-100% power, 1 min, r.t.). The homogenate was incubated (50 min, r.t., end-over-end 

agitation) and centrifuged (8,000 g, 5 min, 4 °C). 30 µL of the supernatant was saved (fraction “D”).  All four 

supernatants were combined into a 50 mL conical tube and stored (7 days, 4 °C). 15 g of semi-dry Ni-NTA 

resin (Qiagen 30450) was weighed out into each of three conical tubes, denaturing buffer was added to 30 mL 

total volume, and the solution was incubated (10 min, end-over-end incubation, r.t.). Denatured PrP was evenly 

added to each of the three conical tubes and incubated (40 min, r.t.). PrP-bound resin was added to a column 

(Cytiva 28988948) and 30 µL of the unbound was saved (fraction “UB”). ÄKTA pure (Cytiva) lines were 

equilibrated with Denaturing Buffer (6 M Guanidinium HCl, 100 mM sodium phosphate pH 8.0) and Refolding 

Buffer (100 mM sodium phosphate, 10 mM Tris pH 8.0) and then 100% Denaturing Buffer. A gradient was run 

from 0-100% Refolding Buffer (2.25 mL/min, 240 min, 4 °C) and then 100% Refolding Buffer (2.25 mL/min, 30 

min, 4 °C). The protein was eluted with a gradient from 0-100% Elution Buffer (500 mM imidazole, 100 mM 

sodium phosphate, pH 6.0) (6 mL/min, 45 min, 4 °C) and then 100% Elution Buffer (6 mL/min, 15 min, 4 °C). 

30 µL of each fraction (fraction “#”) was saved. A 100 µL sample of the resin slurry was saved (fraction “B”). 

The fractions containing PrP were dialyzed (7 kDa MWCO, Thermo Fisher 68700) against 6 L of Dialysis 

Buffer (10 mM sodium phosphate pH 5.8) (overnight 4 °C) and 4 L of Dialysis Buffer (4-6 h, 4 °C). The dialyzed 

elution was centrifuged (4,300 g, 10 min, 4 °C) to pellet precipitated protein. A 30 µL sample of the final protein 

(fraction “F”) was saved. [HuPrP90-231] was measured by its absorbance at 280 nm (ε = 22,015 M-1 cm-1) 

(MW = 16.145 kDa). [HuPrP23-231] was measured by its absorbance at 280 nm (ε = 57,995 M-1 cm-1) (MW = 

22.963 kDa). Protein was aliquotted, frozen in N2(l), and stored at −80 °C. For SDS-PAGE analysis, protein 

samples (30 µL) were mixed with 10 µL 4X Loading Buffer (4X LDS buffer [Thermo Fisher NP0007] with 10 

mM TCEP [Thermo Fisher 77720]). For fraction “B” 25 µL of 4X Loading Buffer was added. Fractions D and 

UB were EtOH-precipitated before SDS-PAGE by adding 270 µL of EtOH, vortexing, and incubating on dry ice 

(5 min). D and UB were centrifuged (21,000 g, 5 min, 4 °C), and the supernatant was discarded. 300 µL 90% 

EtOH (−80 °C) was added, vortexed, and centrifuged (21,000 g, 5 min, 4 °C). The supernatant was discarded 

and the pellet was allowed to dry. 600 µL of 1X Loading Buffer was added to sample D and 40 µL 1X Loading 

Buffer was added to sample UB. All gel samples were incubated (90 °C, 5 min). Fractions were analyzed by 



SDS-PAGE with Coomassie staining (10 µL of each sample into a 15-well Bis-Tris NuPAGE gel (Thermo 

Fisher NP0321BOX), 180V, 40 min). The full amino acid sequences of HuPrP constructs are as follows. The 

N-terminal methionine of HuPrP90-231 was mostly removed by endogenous proteases as expected based on 

the second residue being glycine75; this was verified by intact protein LC-MS (Figure S5C). HuPrP23-231, 

however, retains the N-terminal methionine76, again as expected given the second residue is lysine75. 

HuPrP90-231: 

MGQGGGTHSQWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYP

NQVYYRPMDEYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQRGS

S 

HuPrP23-231: 

MKKRPKPGGWNTGGSRYPGQGSPGGNRYPPQGGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQPHG

GGWGQGGGTHSQWNKPSKPKTNMKHMAGAAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMH

RYPNQVYYRPMDEYSNQNNFVHDCVNITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQ

RGSS 

 

Purification of 15N-HuPrP90-231 and 15N-HuPrP23-231 

The same procedure was used to purify 15N-HuPrP with the following modifications. 15N AIM media was 

composed of 1X BioExpress 15N cell growth media (Cambridge isotope labs CGM-1000-N) in EMD Millipore 

Overnight Express induction system (Sigma-Aldrich 71300-M) with kanamycin (25 µg/mL) and 

chloramphenicol (25 µg/mL). Dialysis Buffer was 20 mM HEPES pH 7.4, 50 mM NaCl. 

 

NMR data acquisition and analysis 

Spectra were acquired on a 600 MHz Bruker Avance III NMR Spectrometer equipped with a 5 mm QCI cryo-

probe using 3 mm sample tubes (Bruker Z112272) and a SampleJet for sample handling. Spectra were 

analyzed in TopSpin version 4.0.2 and MestreNova version 10.0.1. Hit identification was performed by visual 

inspection of the data. 

 
19F NMR screening 

HuPrP23-231 (final concentration 9 µM) or matched dialysis buffer alone (20 mM HEPES pH 6.8, no-protein 

control condition) was combined with 10% D2O and 4.5% DMSO containing a pool of 10 19F fragments per 

NMR tube (45 µM each) with a total volume of 200 µL for each sample. A 19F NMR spectrum was obtained for 

each sample using a standard 1H-decoupled one-pulse experiment with 64 scans and a spectral width of 237 

ppm with the carrier frequency at -100 ppm. The sample temperature was 280 K. Fragment hits were identified 

by comparison of both the peak position and peak width between the control (no protein) sample and the 

protein-containing sample. For this screen minimal line-broadening was observed; fragment hits were identified 

by visual review of chemical shifts, with perturbation of ≥0.005 (3 Hz) as an approximate threshold. Hit peaks 

from pools were compared to reference spectra to identify the likely hit fragment. Resupplied fragments were 

tested by STD NMR and/or 1H-15N TROSY NMR as described below. 

 

STD NMR screening 

HuPrP90-231 was buffer exchanged into 20 mM HEPES-d18 pH 7.4, 150 mM NaCl in ~99% D2O using a 5 

kDa MWCO centrifugal concentrator (Millipore C7715). Pre-plated fragment pools were thawed in a dessicator 

at room temperature. For the Broad Institute 1st and 2nd generation STD libraries, 180 µL of HuPrP90-231 (11 

µM) in deuterated buffer was added to each well, mixed with the fragments (1.6% DMSO-d6, v/v), and 

transferred immediately to a 3 mm NMR tube. The ChemBridge High Solubility Subset and Schreiber chiral 

fragment collection screens used HuPrP90-231 at 10 µM, 2 % DMSO-d6 (v/v), in 20 mM HEPES-d18 pH 6.8, 

25 mM NaCl in ~99% D2O. Fragments were pooled with eight (Broad 1st and 2nd Gen STD and ChemBridge 

High Solubility Subset) or five (Schreiber chiral fragment collection) fragments per tube, always at a final 

concentration of 200 µM each. The Schreiber chiral fragment collection consisted of n = 381 compounds 

synthesized in-house, many of which have been described previously77–79. In silico screening hits (100 µM) 

were mixed with HuPrP90-231 (11 µM) in 20 mM HEPES-d18 pH 7.4, 150 mM NaCl in ~99% D2O with 1% 

DMSO-d6 (v/v). Ligand-observed screening was done using STD NMR. On-resonance irradiation of the protein 



was done at -0.25 ppm and off-resonance irradiation at 30 ppm. To saturate the protein, a 2 s train of 50 ms 

gaussian pulses separated by 1 ms delays was used. A 27 ms spin-lock pulse was used to suppress protein 

signals, and water suppression was accomplished using the excitation sculpting with gradients pulse scheme. 

The sample temperature was 280 K. Hit pools were identified by visual inspection and fragment hits were 

confirmed as singletons using the same experimental conditions as above. Compound 1 (5,6-dichloro-2-

methyl-1H-benzimidazole) was purchased from two different vendors (Combi-Blocks HC-3145 and Key 

Organics PS-4319) and retested for an STD signal, which was reproducible across vendors. The compound 

from Key Organics was deemed more pure than other sources by NMR, thin-layer chromatography, and LC-

MS and was used for the majority of experiments presented here. 

 
1H-15N TROSY NMR of 15N-HuPrP90-231 and 15N-HuPrP23-231 
15N-HuPrP90-231 (50-60 µM) in 20 mM HEPES pH 7.4, 50 mM NaCl was combined with D2O (10%, v/v) and 

ligand (0-1 mM) or DMSO (2%, v/v), mixed and added to a 3 mm NMR tube. 15N-HuPrP23-231 in 20 mM 

HEPES pH 7.4, 150 mM NaCl was combined with D2O (10%, v/v) and compound 1 (0.3-1 mM) or DMSO (3%, 

v/v), mixed, and added to a 3 mm NMR tube. All concentrations are final. 1H-15N TROSY spectra were 

acquired at 298 K with 64 scans and 128 increments. Chemical shift perturbations (CSPs) were identified by 

visual inspection. Quantification of dose-response CSPs was performed with MestReNova version 10.0.1. 

Compound 1 was reproducible for CSPs across two different vendor sources used for retesting (described 

above). 

 
1H-15N HSQC NMR of 15N-HuPrP90-231 
15N-HuPrP90-231 (50 µM, 160 µL) in 20 mM HEPES pH 7.4, 50 mM NaCl was combined with 18 µL D2O 

(10%, v/v) and ligand (100 µM final concentration, 1.8 µL) or DMSO (1%, v/v), mixed and added to a 3 mm 

NMR tube. 1H-15N HSQC spectra were acquired using a 600 MHz Bruker Avance II spectrometer at 298 K. 2D 

data were processed and analyzed by using TopSpin version 4.0.2 software. CSPs were identified by visual 

inspection. 

 

AmpC aggregation counter-screen 
Compounds were tested for colloidal aggregation using an AmpC β-lactamase counter-screen62. 
Recombinant E. coli AmpC was expressed in Rosetta cells and purified using a published protocol80. The 
enzymatic assay was performed in 50 mM sodium phosphate pH 7.0 ± 0.01% Triton X-100 (v/v) in clear UV-
transparent 96-well half-area microplates (Corning 3679) in 150 μL final reaction volumes. Final concentration 
of DMSO was 1.0% (v/v). Compounds were incubated with 5 nM AmpC in 143.5 μL reaction solution for 5 min 
at r.t., followed by the addition of 1.5 μL of nitrocefin substrate (Cayman 15424) dissolved in DMSO (100 μM 
initial substrate concentration). Reaction solutions were gently mixed by multichannel pipette. Reaction 
progress was continuously monitored by absorbance at 482 nm for 5 min at r.t. on a SpectraMax M3 plate 
reader. Percent activity was calculated from reaction rates (slope) and normalized to DMSO-only controls after 
background subtraction with an enzyme-free reaction. Anacardic acid (AA), rottlerin, and 3',3'',5',5''-
tetraiodophenolphthalein (TIPP) (Combi-Blocks QE-5474) were used as positive controls. The significance 
difference between detergent and non-detergent tests was defined as p < 0.01 (after correction for multiple 
comparisons). Four intra-run technical replicates were performed on same microplate. 
 

DSF screening 

All concentrations are final assay concentrations unless otherwise indicated. All reagents were diluted in 20 

mM HEPES pH 7.4, 150 mM NaCl, 1 mM EDTA. Protein was thawed and centrifuged (4500 g, 10 min, 4 °C) to 

pellet precipitate. HuPrP90-231 (30 μM) was mixed with SYPRO Orange dye (10X) (ThermoFisher S6651) and 

centrifuged (4500 g, 10 min, 4 °C) then decanted into a new bottle and covered in foil. Compound stocks 

dissolved in DMSO:H2O (90:10, v/v) were dispensed into 384-well barcoded plates (200 nL, 5 mM stock 

concentration, 100 μM final concentration) (4titude 4Ti-0381). 10 μL of protein-dye mix were added to each 

well with a Multidrop™ Combi Reagent Dispenser (ThermoFisher), shaken (2 min, r.t.), and centrifuged (1 min, 

r.t.). All Combi lines were covered to block ambient light. A Roche Lightcycler II was used for fluorescence 

measurements with filter sets 465/580. A temperature ramp from 30-90 °C, rate of 0.07 °C/s, and 6 

acquisitions per second (6.5 min run) was used to collect the data. At the beginning of each day, 4 plates with 



no compounds were run to equilibrate the system. Melting temperatures (Tm) were calculated by fitting the 

fluorescence data to a Boltzmann curve. ΔTm values were calculated by taking the Tm with compound and 

subtracting it from the average of the DMSO control wells on each plate (n = 32 DMSO wells per plate). After 

removing error code flagged wells, positive ΔTm hits were picked using the following criteria: ΔTm > 3*MAD 

(0.17 °C), initial fluorescence intensity < 6. Negative ΔTm hits were picked using the following criteria: −0.7 °C > 

ΔTm > −9 °C, initial fluorescence intensity < 6. 1,129 hit compounds were tested in triplicate, all wells flagged 

with error codes 3 and 4 were removed, and hits were chosen based on the following criteria: ΔTm sign must 

be the same as the primary screen, 19.93 > Tm > 0.3, initial fluorescence < 4, Δfluorescence of 2-17.1. Hits 

from the triplicate validation screen were filtered for frequent hitters and PAINS and 84 compounds were tested 

by HSQC NMR. DSF data were analyzed using Tibco Spotfire and RStudio. 

 

Differential scanning calorimetry 

HuPrP90-231 (30 µM) was mixed with buffer or compound (100 µM) in 20 mM HEPES pH 7.4, 150 mM NaCl, 

1 mM EDTA, 2% DMSO (v/v) (400 µL total volume per well). All concentrations are final assay concentrations. 

Data was acquired using MicroCal VP-Capillary DSC instrument from Malvern Panalytical and data was 

analyzed using Origin software provided by the vendor. A temperature ramp from 20-100 °C was conducted at 

a rate of 200 °C/h. Four buffer-only runs preceded the sample runs to equilibrate the system. n = 4 for DMSO 

controls and n = 1 for each compound. 3*SD was used as a hit cutoff. 

 

Macrocycle DEL screening 

DNA-encoded library selection was performed as described using a 256,000-compound macrocycle library55. 

Briefly, 40 µg of HuPrP90-231, purified as described above, was loaded onto His Dynabeads (Invitrogen 

10103D), relying on the intrinsic metal-binding properties of untagged PrP. Beads were washed, blocked, 

incubated with 50 µL of DNA-encoded library (60 min, 4 °C), washed three times, and protein was eluted with 

300 mM imidazole. Barcodes were sequenced on an Illumina MiSeq and enrichment was calculated against a 

no protein condition run in parallel. 

 

In silico screening 

The homology model of human PrP with bound ligand promazine was built on the template of the mouse PrP 

structure65 (PDB ID: 4MA7, chain A) using SWISS-MODEL81.The binding site is surrounded by residues V122, 

G124, L125, G126, Y128, Y162, I182, Q186, V189, T190 on the human PrP homology model. 

 

The virtual screen was carried out using the AtomNet neural network, the first deep convolutional neural 

network for structure-based drug design58,59. A single global AtomNet model was employed to predict binding 

affinity of small molecules to a target protein. The model was trained with experimental Ki, Kd, and IC50 values 

of several million small molecules and protein structures spanning several thousand different proteins, 

curated from both public databases and proprietary sources. Because AtomNet is a global model, it can be 

applied to novel binding sites with no known ligands, a prerequisite to most target-specific machine-learning 

models. Another advantage of using a single global model in prospective predictions is that it helped prevent 

the so-called model overfitting. The following three-step procedure was applied to train the AtomNet model. 

The first step is to define the binding site on a given protein structure using a flooding algorithm82 based on an 

initial seed. The initial starting point of the flooding algorithm may be determined using either a bound ligand 

annotated in the PDB database or crucial residues as revealed by mutagenesis studies, or identification of 

catalytic motifs previously reported. The second step is to shift the coordinates of the protein-ligand co-

complex to a three-dimensional Cartesian system with an origin at the center-of-mass of the binding site. Data 

augmentation was performed by randomly rotating and translating the protein structure around the center-of-

mass of the binding site to prevent the neural network from memorizing a preferred orientation of the protein 

structure. The third step is to sample the conformations or poses of a small-molecule ligand within the binding 

site pocket. For a given ligand, an ensemble of poses was generated, and each of these poses represented a 

putative co-complex with the protein. Each generated co-complex was then rasterized into a fixed-size regular 

three-dimensional grid, where the values at each grid point represent the structural features that are present at 

each point. Similar to a photo pixel containing three separate channels representing the presence of red, 



green, and blue colors, our grid points represent the presence of different atom types. These grids serve as the 

input to a convolutional neural network and define the receptive field of the network. A network architecture of 

a 30×30×30 grid with 1Å spacing for the input layer, followed by five convolutional layers of 32×33, 64×33, 

64×33, 64×33, 64×23 (number of filters × filter-dimension), and a fully connected layer with 256 ReLU hidden 

units was used. The scores for each pose in the ensemble were combined through a weighted Boltzmann 

averaging to produce a final score. These scores were compared against the experimentally measured pKi or 

pIC50 (converted from Ki or IC50) of the protein and ligand pair, and the weights of the neural network were 

adjusted to reduce the error between the predicted and experimentally measured affinity using a mean-square-

error loss function. Training was done using the ADAM adaptive learning method83, the backpropagation 

algorithm, and mini-batches with 64 examples per gradient step.  

 

The Mcule small-molecule library purchasable from the chemical vendor Mcule was used for the in silico 

screen. The original Mcule library version v20180817 containing approximately 10 million compounds in 

SMILES format was downloaded from Mcule’s website (https://mcule.com/). Every compound in the library was 

pushed through a standardization process including the removal of salts, isotopes and ions, and conversion to 

neutral form; conversion of functional groups and aromatic rings to consistent representations. Additional filters 

were applied on some molecular properties including molecular weight MW between 100 and 700 Daltons, 

total number of chiral centers in a molecule ≤ 6, total number of atoms in a molecule ≤ 60, total number of 

rotatable bonds ≤ 15, and only molecules containing C, N, S, H, O, P, B, halogens. Other filters such as 

toxicophores, Eli Lilly’s MedChem Rules84 and PAINS were also applied to remove compounds with 

undesirable substructures, resulting in the final library of 6,922,894 unique compounds. 

 

For each small molecule, we generated a set of 64 poses within the binding site. Each of these poses was 

scored by the trained model, and the molecules were ranked by their scores. Due to a lack of a well-defined 

small molecule binding pocket on the human prion protein structure, there was low confidence in the predicted 

binders. Regardless, the top 50,000 ranking compounds were clustered based on chemical similarity and 

filtered for CNS drug-like properties using the Lipinski’s CNS rules85 with MW ≤ 400, clogP ≤ 5, number of 

hydrogen bond donors ≤ 3, and number of hydrogen bond acceptors ≤ 7. The final set of 81 compounds 

containing diverse chemical scaffolds were selected and sourced from Mcule. 

 

DSF of in silico hits and compound 1 

Compounds were diluted to 1 mM in DMSO/HBS (20 mM HEPES pH 7.4, 150 mM NaCl) (20:80, v/v). 1 μL of 

compound was added to each well of a 384-well plate (90 μM final concentration). Mixtures of HuPrP90-231 

(30 μM) were prepared with SYPRO Orange dye (10X) in 20 mM HEPES pH 7.4, 150 mM NaCl, 1 mM EDTA 

buffer then centrifuged (4000 g, 10 min, 4 °C) and decanted into a new tube. 10 μL were added to each 

compound and mixed (2% DMSO final concentration, v/v). A Roche Lightcycler II was used for fluorescence 

measurements with filter sets 465/580. A temperature ramp from 30-90 °C, rate of 0.07 °C/s, and 8 

acquisitions per second (~18 min per plate) was used to collect the data. Three independent plates (using the 

same protein-dye mix) were measured with n = 32 for DMSO controls per plate and n = 1 for each compound 

per plate. ΔTm values were calculated by subtracting the average apo Tm from the Tm with compound. Three 

ΔTm values per compound were averaged and plotted. Error bars represent standard deviation (SD = 0.26 °C). 

For DSF of compound 1 with HuPrP90-231, the same experimental parameters were used as above except 

compound 1 was used at 500 μM concentration and n = 8 intra-run technical replicates performed on the same 

assay plate. 

 

Intact protein LC-MS 

Purified HuPrP90-231 was diluted to 2 µM in 20 mM HEPES pH 7.4, 50 mM NaCl. 1 µL of diluted protein was 

injected onto a Waters BioAccord LC-ToF (composed of an ACQUITY I-Class UPLC and RDa detector with 

ESI source). Mobile phase A consisted of 0.1% formic acid (Millipore LiChroPur) in LC-MS grade water 

(JTBaker) and mobile phase B consisted of 0.1% formic acid in LC-MS grade acetonitrile (JTBaker). Protein 

was trapped on a C4 column (ACQUITY UPLC Protein BEH, 300Å, 1.7 µm, 2.1 X 50 mm) held at 80 °C for the 

entire analysis. The protein was desalted for one minute before elution with a gradient of 5% to 85% mobile 



phase B in 2.5 min. Ionization was performed with 55 V cone voltage and 550 °C ionization temperature. The 

instrument scan rate was 0.2 scans/s over 50 to 2000 m/z. PrP eluted at an observed retention time of 2 min. 

The PrP charge envelope was deconvoluted into the intact mass using the MaxEnt1 function using UNIFI 

software (Waters). 

 

Code and data availability 

Raw data and source code will be made available in a public GitHub repository: 

http://github.com/ericminikel/binder_screening 
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SUPPLEMENT 

 

Supplemental Tables (see Excel files) 

 

Supplemental Table 1. All compound 1 analogs tested for HuPrP90-231 binding. +, positive STD/TROSY 

signal; -, no STD/TROSY signal; ±, borderline positive STD/TROSY signal. Blank indicates not tested. All 

spectra were assessed by visual inspection. For precipitation notes, “+” indicates that precipitate was observed 

during the experiment, and “±” indicates mild or questionable precipitation. R1-4 and X groups correspond to the 

molecule in Table 2. 

 

Supplemental Table 2. In silico screening hits tested by DSF and STD NMR. 

 

 

Supplemental Figures 

 

 

 
Supplemental Figure 1. A) TROSY spectrum of 15N-HuPrP90-231 overlaid with residue annotations from 

BMRB #571361. 



 

 

 
Supplemental Figure 2. A) TROSY NMR of 15N-HuPrP23-231 with DMSO (black) or 1 mM 1 (red). B) 

Concentration dependent CSPs of residues Q212 and T191 upon addition of 1. C) CSPs for 15N and 1H from 
15N-HuPrP90-231 with 0.75 mM 1 before normalization as in Figure 2C. D) DSF Tm values for HuPrP90-231 

with and without 500 µM 1. Error bars represent 95% CI of n = 8 intra-run technical replicates performed on the 

same assay plate. 

 

 



 



 



 
Supplemental Figure 3. Analogs of 1 tested by STD NMR and TROSY NMR. Numbers correspond to 

compound number in Table 2 and Table S1. 

 

 

 



 
Supplemental Figure 4. Selected conditions explored during the DSF assay development process. Assay 

development was initially undertaken at the Broad Institute (A-Q) before the assay was transferred to Novartis 

(R-AE). A-E) Assay volume. Because a prior report31 used 150 µL assay volume in a 96-well format, we asked 

whether signal would be improved by increasing assay volume within the limit allowed by our 40 µL 384-well 

plates. HuPrP23-231 (5.7 µM) with SYPRO Orange (8.75X) and 1% DMSO (v/v) in 20 mM HEPES pH 6.8, 25 

mM NaCl, 1 mM EDTA (hereafter HEPES Buffer). Because no improvement in signal was observed, 10 µL 

volume is used in subsequent experiments. F-G) Buffer. HuPrP23-231 (10 µM) with SYPRO Orange (15X) and 

1% DMSO in either HEPES Buffer or 137 mM NaCl, 2.7 mM KCl, 10 mM Na2PO4, 1.8 mM KH2PO4 pH 7.4 

(CSH PBS; doi:10.1101/pdb.rec8247). H-K) Zinc titration. HuPrP23-231 (5 µM) with SYPRO Orange (15X) and 

1% DMSO (v/v) in CSH PBS with 0, 1, 2, or 4 molar equivalents of ZnSO4. L-O) Copper titration. HuPrP23-231 



(5 µM) with SYPRO Orange 15X and 1% DMSO in CSH PBS with 0, 1, 2, or 4 equivalents of CuSO4. P-Q) 

Candidate positive control. HuPrP23-231 (50 µM) with SYPRO Orange (10X) and 2% DMSO (v/v) in HEPES 

Buffer, with or without 20 µM of the iron porphyrin FeTMPyP (Fe(III)tetrakis (1-methyl-4-pyridyl) porphyrin 

pentachloride; CAS #133314-07-5; Cayman Chemical #75854). Note that EDTA may chelate the iron from 

TMPyP, and unmetallated porphyrins are reported to be less active than metallated ones37; moreover, because 

FeTMPyP is substoichiometric to PrP, even if it binds with a Kd of ~1 µM as reported46, only a minority of PrP 

will be bound. For both of these reasons, the dramatic change in melting curve observed in this experiment is 

likely an artifact of FeTMPyP fluorescence. R-V) Dye titration. 30 µM HuPrP90-231 with varying SYPRO 

Orange concentrations. W-AA) DMSO titration. HuPrP90-231 (30 µM) with SYPRO Orange (10X) and varying 

DMSO concentrations (v/v) in 20 mM HEPES pH 7.5, 150 mM NaCl. AB-AE) Protein titration. HuPrP90-231 at 

varying concentrations with SYPRO Orange (10X) in 20 mM HEPES pH 7.0, 150 mM NaCl. 

 

 

Supplemental Figure 5. A) Example SDS-PAGE of HuPrP90-231 protein purification used for the DSF 

screen. L, whole-cell lysate (diluted 1:20); S, soluble fraction (diluted 1:20); W, first inclusion body wash; W2, 

second inclusion body wash; D, denatured protein (diluted 1:20) post centrifugation; UB, unbound; 1-4, AKTA 

elution fractions; B, Ni-NTA resin after elution; F, final PrP sample stored at −80 °C. B) AKTA elution traces for 

six separate purifications of HuPrP90-231, which elutes between 12-20 minutes. C) Deconvoluted charge 

envelope of HuPrP90-231 from intact protein LC-MS. D) Differential scanning calorimetry of eight (n = 1) 

selected positive shifters present in the Broad Institute’s compound collection along with corresponding DSF 

data from the validation screen. 3*SD = 0.41 °C for n = 4 apo (DMSO) replicates. E) Compound structures 

corresponding to panel D.  


