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Abstract 
 
Safety failures are an important factor in low drug development success rates. Human genetic 
evidence can select drug targets causal in disease and enrich for successful programs. Here, 
we sought to determine whether human genetic evidence can also enrich for labeled side 
effects (SEs) of approved drugs. We combined the SIDER database of SEs with human genetic 
evidence from genome-wide association studies, Mendelian disease, and somatic mutations. 
SEs were 2.0 times more likely to occur for drugs whose target possessed human genetic 
evidence for a trait similar to the SE. Enrichment was highest when the trait and SE were most 
similar to each other, and was robust to removing drugs where the approved indication was also 
similar to the SE. The enrichment of genetic evidence was greatest for SEs that were more drug 
specific, affected more people, and were more severe. There was significant heterogeneity 
among disease areas the SEs mapped to, with the highest positive predictive value for 
cardiovascular SEs. This supports the integration of human genetic evidence early in the drug 
discovery process to identify potential SE risks to be monitored or mitigated in the course of 
drug development. 
 
Introduction 
 
Safety issues are a major contributor to drug candidate failure1. The causal evidence of human 
genetics between drug targets and phenotypic outcomes can provide insights into potential on-
target safety liabilities of drug candidates before development has even begun2. There are many 
anecdotes of adverse events supported by genetic evidence2 and drug tolerability supported by 
the lack of negative consequences of gene loss of function in humans3. Methodical studies have 
shown that drug targets with genetic evidence related to a given organ system are more likely to 
exhibit side effects (SEs) in that organ system4, and that drugs with SEs are more likely to bind 
off-target proteins with related Mendelian diseases5. Phenome-wide association studies6, 
curation of loss-of-function variants7, and studies investigating the clinical and molecular 
consequences of rare homozygous loss-of-function participants8 been used to evaluate 
potential on-target liabilities. Yet support for the predictive value of genetic evidence for SEs 
remains limited. 
 
We recently revisited our prior observation that human genetic evidence supporting the causal 
relationship between the protein target and indication of a drug, showing that it increases clinical 
success rates by a factor of 2.69. In so doing, we established a method for mapping human 
genetically studied traits to drug indications via a similarity matrix based on Medical Subject 
Headings (MeSH) terms. We used the same approach here to link genetic evidence to SEs and 
determine whether they are similarly enriched. Assigning quantitative similarity scores allowed 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2023. ; https://doi.org/10.1101/2023.12.12.23299869doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.12.12.23299869
http://creativecommons.org/licenses/by/4.0/


us to test the sensitivity of such enrichment to potential confounders. Finally, we estimated the 
positive predictive value of human genetic evidence, examined the effects of SE frequency, 
specificity, and severity, and compared the value of genetically-informed predictions across 
different types of SEs. 
 
Results 
 
The primary challenge in this research is establishing relationships between drug targets and 
reported SEs. There is a paucity of systematic data about statistically enriched SEs observed in 
clinical development.  We chose to focus on SEs captured in drug labels and package inserts, 
limiting us to approved drugs as captured in Side Effect Resource (SIDER)10,11, to which we 
joined our database of human genetic evidence9. This resulted in 2,094 unique SEs (MeSH 
terms), and 567 unique drugs with at least 1 human target, 1 SE and 1 approved indication, or 
1,187,298 possible drug-SE pairs (Table S1-S4). Of these possible pairs, the SE was observed 
(reported in the drug label) for 64,481, yielding an overall base rate (prior probability of an SE 
being observed for a given drug) of 5.4%.  
 
The primary analysis of interest is the relationship between drug-SE pairs and the presence of 
genetic evidence between the gene encoding the drug target and a trait similar to the SE. At a 
trait-SE similarity threshold ≥0.9, we found this strongly enriched (OR = 2.3, 95% CI = 2.2-2.5, 
Fisher’s exact test). We explored several possible confounders that could affect this observed 
enrichment (Figure S1A, Table S5). We restricted our analysis to drug-SE pairs where the SE 
has been studied genetically as well as removing drug-SE pairs where the drug is approved for 
an indication similar to the SE. This had a modest effect, reducing the OR to 2.0 (95% CI = 1.8-
2.1) in combination (Figure S1B, Table S6). We retained both filters for all subsequent analyses. 
Examining the sensitivity of this enrichment to our SE-trait similarity threshold, we observed 
ORs above 1 down to 0.2, perhaps recapitulating the previously  reported enrichment at the 
level of organ system4 (Figure 1A, Table S7). Varying the threshold for removal of SEs with a 
similar indication had minimal impact, except at very low thresholds where a large majority of 
data were removed (Figure 1B, Table S8). These results support the ≥0.9 similarity thresholds 
used for both metrics. We next examined whether the source of genetic evidence had any 
influence on this enrichment (Figure 1C, Table S9), and found little difference, though germline 
oncology evidence had the highest levels of enrichment (Figure S2, Table S10-S11). 
 

Figure 1. Predictive value of human genetic evidence for labeled drug side effects. A) 
Sensitivity of OR to the threshold for similarity of SE to genetically studied traits; selected 
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similarity thresholds are annotated, resulting number of drug-SE pairs with similar genetic 
evidence are shown on the x axis and OR is shown on the y axis. Threshold for removal of SEs 
with similar indications is fixed at 0.9. B) As in A, but here the threshold for SE-trait similarity is 
fixed at 0.9 while the similarity threshold between the SE and approved indications is varied. C) 
OR for several sources of genetic evidence contributing to this study. 
 
SIDER provides several SE modifiers extracted from the text, including frequency as numerical 
estimates or descriptive terms and whether the SEs were supported by placebo or non-placebo-
controlled studies. Where numerical frequencies were available, we found that genetic evidence 
enrichment increases with increasing SE frequency (P = 7.4e-8, binomial logit, Figure 2, Table 
S12-S13). The effect was more variable when analyzed using descriptive frequency terms 
ranked by their reported perceived numeric values12 (P = 0.057 for the linear term in a binomial 
logit, Figure 2, Table S14-S16), though the highest point estimates were for SEs described as 
common or very common. Estimates of enrichment were higher for SEs backed by placebo-
based evidence, but that difference was not statistically significant (P = 0.079, binomial logit, 
Figure 2, Table S17-S18).  
 

 
Figure 2. Impact of SE modifiers on genetic evidence enrichment. Because frequency and 
evidence basis are only defined for observed side effects, the OR indicated here is the 
enrichment of genetic evidence conditioned on an SE being observed with the indicated modifier
The assoc/obs fraction indicates in the denominator the number of drug-SE combinations 
observed with the indicated properties and in the numerator the number of those that have 
genetic evidence. The ordering of the frequency words is based on ref. 12. 
 
We further explored enrichment of genetic evidence based on the number of different drugs for 
which an SE was reported, without respect to the underlying target gene.  We found it was 
strongest for SEs observed for 2-9 drugs, and decreased as the number of drugs increased 
(Figure 3A, Table S19). This poses a challenge for practical utility of human genetics in 
predicting SEs. The SEs that are most informed by genetic evidence are more drug-specific, 
and highly drug-specific SEs necessarily have a low base rate, resulting in relatively low 
predictive values (PPVs; probability of observing an SE given genetic evidence, Figure 3B, 
Table S19).  
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Using crowdsourced severity rankings of the observed SEs13, we found that OR was also 
positively, though non-monotonically, associated with SE severity (P = 3.0e-23, binomial logit; 
Figure 3C, Table S20-S21), while the base rate was slightly lower for the more severe SEs 
(Figure 3D, Table S20). SE severity and specificity were themselves correlated (P = 2.1e-4, log-
linear regression; Figure 3E, Table S22) with more severe SEs tending to be observed for fewer 
drugs. 
 

Figure 3. Relationship between SE specificity and severity, and the predictive value of 
genetic evidence. A) OR for enrichment of genetic evidence, binned by the number of drugs for
which SE was observed. The unit of analysis is drug-SE pairs; thus, the number of observed 
drug-SE pairs is necessarily higher for those SEs observed for a larger number of drugs, hence 
the tighter confidence intervals in the “100+” bin compared to the “1” bin. B) Base rate 
(proportion of drugs reporting the SE) and positive predictive value (proportion of drugs with 
genetic evidence for the SE) binned as in A. Note that the higher base rate for those SEs 
observed for a larger number of drugs is tautological. C) OR by quartiles of SE severity. D) Base 
rate and positive predictive value binned as in C. E) Correlation between severity and specificity
each point is an SE, x axis indicates its severity quantile and y axis indicates the number of 
drugs for which it is observed. 
 
To better understand the value of genetic evidence on SE risk, we next binned SEs by top level 
disease headings of the MeSH ontology (Figure 4, Table S23), revealing substantial 
heterogeneity in OR (P < 1e-15, CMH test; Figure 4A). Endocrine-related SEs, for instance, had 
the largest effect (OR = 6.5) with a low base rate (1.9%) and a PPV of 10.5% (Figure 4B), and 
were moderately severe (Figure 4C, Table S23). In contrast, cardiovascular SEs had a 
combination of high base rate and high OR resulting in the highest PPV (27.7%), and tended to 

be relatively severe. PPV and OR were not significantly correlated across SE areas (ρ = 0.38, P 

= 0.14, Spearman) nor between severity and base rate (ρ = -0.24, P = 0.36, Spearman). These 
findings were broadly consistent when we removed drugs where an approved indication fell 
within the same area as the SE (Figure S2, Table S23). 
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Figure 4. Utility of human genetic evidence for predicting side effects by affected 
function or organ system. A) OR binned by the SE’s top-level heading within the Medical 
Subject Headings (MeSH) ontology. Fractions indicate the number of drug-SE pairs with genetic 
evidence (denominator) and of those, the number that were observed (numerator). B) Base rate 
(mean proportion of drugs with the side effect) and positive predictive value (proportion of drugs 
with genetic evidence that exhibit the SE) were binned as in A. C) Median and interquartile 
range (IQR) of severity quantiles for SEs in each bin. D) Positive predictive value (PPV) vs. OR 
across and E) median severity vs. base rate across SE areas. 
 
Discussion 
 
An important limitation of our analysis is restriction to SEs for approved drugs. The requirement 
for drugs to exhibit a favorable risk/benefit balance to achieve approval presumably constrains 
SEs to be less frequent or less severe than would be the case for drugs in clinical development. 
It is possible that human genetic evidence has different predictive value for SEs observed in 
trials that could result in termination than for labeled for approved drugs.  
 
Our results demonstrate that human genetic evidence identifies on-target drug mechanisms that 
are at increased risk for SEs among approved drugs. Genetic evidence of cardiovascular effects 
were particularly predictive of SEs, with a PPV of nearly 30% and relatively high reported 
severity. These results support the use of genetic evidence to identify potential SE risks that can 
be monitored and potentially mitigated during drug discovery and clinical development. 
 
 
 
Online Methods 
 
Side effects. Side effect data were obtained from the SIDER database11 (v4.1). Citeline 
Pharmaprojects14 and DrugBank15 were parsed as described7,9,16, and SIDER drug names were 
mapped to Pharmaprojects indications using text matches to Pharmaprojects drug name 
synonyms, or, by mapping first to DrugBank using either ATC codes or name matches to obtain 
CAS numbers, and then looking up CAS numbers in Pharmaprojects; the proportion of drugs 
mapped by various approaches is provided in Table S2. Pharmaprojects matches were used to 
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obtain human gene targets and MeSH terms for approved indications as described9. Side 
effects were mapped to MeSH terms using UMLS MedDRA – MeSH mapping, exact term and 
substring match to UMLS and MeSH, and manual curation; the proportion of terms mapped by 
various approaches is provided in Table S3. We removed drugs that were duplicates, lacked an 
annotated human target, an annotated approved indication, or were unmappable (Table S4). 
Severity rankings were taken from a crowdsourcing study13. Ordering of frequency terms was 
based on numerical values determined empirically with human participants12. 
 
Human genetic evidence. We used human genetic evidence from OMIM17, Open Targets 
Genetics18, PICCOLO19, Genebass20, and IntoGen21; the filtering, aggregation, and MeSH 
mapping of this dataset has been described9. Open Targets Genetics gene mappings were 
filtered to those with ≥50% of the total share of locus-to-gene (L2G) score assigned to any gene. 
As before9, we considered a trait to have been studied genetically if there was at least 1 OMIM 
or IntOGen gene, or at least 3 unlinked GWAS associations for a trait with ≥0.8 similarity. 
 
Similarity mapping. Similarity between MeSH terms for SEs, genetically associated traits, and 
drug indications was computed using combined Lin and Resnik similarity scores22,23 as 
described9. MeSH terms were further mapped onto MeSH top level headings as described9. 
 
Target enrichment. To test whether a particular side effect was enriched among drugs with a 
particular target, we performed a Fisher exact test on the contingency table of drugs with and 
without the target of interest, with and without the side effect of interest reported. Target-SE 
combinations yielding an odds ratio ≥2 and a nominal P value <0.01 were considered to be 
enriched. We note that the power to detect such enrichment is confounded with the number of 
drugs sharing a particular target and with the number of drugs for which the side effect is 
reported. Moreover, drugs sharing a target may also be of the same chemical class and may 
therefore share off-target liabilities. In consideration of these limitations, we considered target 
enrichment among our candidate variables in Figure 1A but did not use this metric in ensuing 
analyses. 
 
Models and statistics. Analyses utilized custom scripts in R 4.2.0. The primary metric in this 
analysis — whether an SE is more likely to be observed when there was genetic evidence —
 was computed as an odds ratio (OR) from a Fisher exact test on the 2 x 2 contingency table of 
drugs with and without an SE, whose targets do or do not have a genetic evidence. Following 
the findings of Figure 1A-B, this was computed after removing drugs with an indication similar to 
the SE, and after removing SEs not studied genetically. The shaded areas for curves and error 
bars in forest plots represent the 95% confidence intervals from this Fisher test. Binomial logit 
models used the SE’s occurrence as the dependent variable, and genetic evidence and the 
variable of interest (for instance, SE severity) as independent variables, with interaction 
terms — in R, glm(observed ~ sim_assoc * severity, family=’binomial’). The Cochran-Mantel-
Haenszel (CMH) test for heterogeneity was performed across these 2 x 2 contingency tables for 
each MeSH area. For analysis of attributes that are only defined when the SE is observed 
(frequency and placebo status in Figure 2), the Fisher test was based on the 2 x 2 contingency 
table of drugs that do or do not have an SE with the stated attributes (for instance, 
frequency >10% in patients), whose targets do or do not have genetic evidence. In such 
instances, binomial logit models used presence of genetic evidence as the dependent variable, 
and the variable of interest (for instance, numerical frequency) as the independent variable: e.g. 
glm(sim_assoc ~ frequency, family=’binomial’). Frequency terms were treated alternatively as 
ordinal variables, resulting in terms for linear and higher-order terms, or as numerical variables 
with the term’s rank as the numerical value, resulting in only a linear term. Base rate, or an SE’s 
drug specificity, was defined as the proportion of drug-SE pairs for which the SE was observed. 
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Positive predictive value (PPV) was defined as the number of drug-SE pairs where the SE was 
observed and was supported by genetic evidence, divided by the total number of drug-SE pairs 
where the target had genetic evidence. Linear regression for specificity versus severity used the 
logarithm of the number of drugs for which an SE was observed, in R: lm(log(n_drugs) ~ 
severity). Correlations across MeSH areas were tested using Spearman rank correlations. All 
tests were two-sided, and P values less than 0.05 were considered to be nominally significant. 
 
SOURCE CODE AVAILABILITY AND DATA AVAILABILITY 

An analytical dataset and source code will be made available at 
https://github.com/ericminikel/genetics_side_effects/ and will be sufficient to reproduce all 
figures and statistics herein. 
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SUPPLEMENT 
 

Figure S1. Examination of possible confounders and establishment of metric used 
throughout. A) Correlogram showing the odds ratios (ORs) by Fisher exact test for enrichment 
of all combinations of properties (Table S1, Table S5, Methods) evaluated in the dataset. B) OR 
for enrichment of genetic evidence vs. SE observed, with the indicated filters applied. 
 

Figure S2. Breakdown of evidence sources for oncology. A) Forest plot of OR by source of 
evidence (IntOGen somatic evidence vs. all sources of germline evidence) versus oncological 
and non-oncological SEs. B) Drug specificity of oncological and non-oncological SEs. IntOGen 
overall has an OR < 1 because its somatic evidence are almost exclusively similar to 
oncological SEs, which are more drug-specific than non-oncological SEs. Thus, the IntoGen OR 
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for oncology only is shown in Figure 1. Germline evidence appears to have a higher OR than 
somatic evidence for oncology. 
 

Figure S3. Breakdown by side effect area.  As Figure 4, but within each MeSH area, any drug 
with any indication in that area is removed. 
 
Tables S1-S23 are provided as a separate Excel file and are available online. 
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