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Abstract 
 
Lowering expression of prion protein (PrP) is a well-validated therapeutic strategy in prion 
disease, but additional modalities are urgently needed. In other diseases, small molecules have 
proven capable of modulating pre-mRNA splicing, sometimes by forcing inclusion of cryptic 
exons that reduce gene expression. Here, we characterize a cryptic exon located in human 
PRNP’s sole intron and evaluate its potential to reduce PrP expression through incorporation 
into the 5’ untranslated region (5’UTR). This exon is homologous to exon 2 in non-primate 
species, but contains a start codon that would yield an upstream open reading frame (uORF) 
with a stop codon prior to a splice site if included in PRNP mRNA, potentially downregulating 
PrP expression through translational repression or nonsense-mediated decay. We establish a 
minigene transfection system and test a panel of splice site alterations, identifying mutants that 
reduce PrP expression by as much as 78%. Our findings nominate a new therapeutic target for 
lowering PrP. 
 
Introduction 
 
Prion disease is a rapidly fatal neurodegenerative disease caused by the templated misfolding 
of the prion protein, PrP, encoded by the prion protein gene (PRNP in humans)1. Prion disease 
naturally afflicts a range of mammals and has long been modeled in laboratory rodents, in which 
the full disease process can be induced. Both genetic2 and pharmacological3,4 experiments in 
such models have demonstrated that reducing the amount of PrP in the brain is protective 
against prion disease, inspiring hope that a PrP-lowering therapy could be used to effectively 
treat, delay, and prevent disease in patients and individuals at risk5. An RNAse H1 antisense 
oligonucleotide targeting PRNP RNA for degradation is now in preclinical development3,4,6,7, but 
additional therapeutic candidates are urgently needed.  
 
Recently, the FDA-approved drug risdiplam8–11 and clinical candidates kinetin and branaplam12–

15 have highlighted small molecule modulation of pre-mRNA splicing as another tool for 
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therapeutic tuning of gene expression. Branaplam causes incorporation of a piece of intronic 
sequence — variously called a non-annotated exon, cryptic exon, or poison exon — into mature 
HTT mRNA, causing a frameshift and nonsense-mediated decay15. Inspired by this work, we 
were led to inquire whether the architecture of PRNP would lend itself to disruption via splice 
site manipulation. PRNP’s coding sequence is located entirely within a single exon, precluding 
frameshift strategies. We hypothesized, however, that inclusion of a novel upstream open 
reading frame (uORF) in the PRNP 5’UTR could decrease PrP expression. It is known that 
uORFs can have dramatic effects on gene expression16,17 either through reduced abundance of 
ribosomes on the canonical ORF, or possibly through nonsense-mediated decay (NMD) 
triggered by the presence of a stop codon prior to the final splice junction, though the latter 
mechanism is debated18. The existence of Mendelian diseases caused by variants introducing 
uORFs19, the evolutionary constraint of genetic variants that cause or extend uORFs in dosage 
sensitive genes20, as well as work with uORF-targeting antisense oligonucleotides21, underscore 
the potential functional impact of uORFs. 
 
Here, we identified a potential uORF within a cryptic exon located in PRNP’s sole intron, 
homologous to exon 2 in many non-primate species. By genetically strengthening the splice 
sites surrounding the cryptic exon located in PRNP’s 5’ UTR, we show that the mutations 
yielding the most robust inclusion of exon 2 reduced PrP expression by up to 78% in human 
cells. Certain other mutants reduced PRNP transcript levels and PrP protein expression without 
yielding cryptic exon inclusion detectable by qPCR, suggesting multiple mechanisms may be 
operative. These efforts nominate a novel strategy for lowering PrP. 
 

Results 
PRNP is a small gene of roughly 15 kilobases (kb) in humans (Figure 1A). In all mammals, the 
entire coding sequence is contained in the final exon of the gene, while the 5’UTR is divided 
across exons, however, the number of exons differs. In mouse and most other preclinical 
species of interest, there are 3 constitutive exons22,23, with introns 1 and 2 dividing the 5’UTR 
(Figure 1B). In Syrian hamsters, exon 2 is subject to variable splicing and is included in ~27% of 
transcripts24 (Figure 1B). In humans and several closely related primate species, PRNP has 
only two annotated exons, the equivalent of exons 1 and 3 from other mammals; exon 2 
remains as a cryptic exon within the sole intron25. For clarity, herein we will refer to human 
PRNP exons 1, 2, and 3, and introns 1 and 2, even though the naturally occurring PRNP 
transcript contains only 2 exons and 1 intron. 

Although essential splice sites — AG at the A-1 and A-2 and GT at the D+1 and D+2 positions 
— are conserved in human exon 2, we hypothesized that other nearby base pair substitutions 
may contribute to exclusion of this exon, particularly the loss of the G at the highly constrained 
D+5 position26 (Figure 1B). Human PRNP exon 2 contains an ATG in a moderately strong 
Kozak context (Figure 1C), estimated to yield 57% maximal translational efficiency, near the 
median of canonical ORFs of all other human protein-coding genes27 (Figure 1D). Human 
PRNP was previously reported28 to already contain 4 uORFs in exon 1, however, RNA-seq data 
from human brain tissue29 provide no support for transcription initiation beginning this far 
upstream: mean RNA-seq coverage at these uORFs is <0.5% of the peak coverage within exon 
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1 (Figure 1A). Thus, if exon 2 were included, its ATG would yield a new, sole uORF upstream of 
PRNP's canonical start codon (Figure 1E) with the potential to downregulate PrP expression 
through its impact on ribosomal activity16,30. Its stop codon also occurs 22 bp prior to the exon 
2/3 splice junction (Figure 1E), creating a possible opportunity to trigger nonsense-mediated 
decay (NMD; see Discussion). Alignment of PRNP exon 2 sequences across all available 
mammalian species (Figure 1F and Figure S1) reveals that exon 2 ATGs are present only in 
species with exon 2 splice site variants known or predicted to exclude exon 2 from mature 
mRNA, consistent with the possibility of exon 2 uORF having a strong negative effect on PrP 
expression. We thereby hypothesized that acting through either of these mechanisms, inclusion 
of exon 2 and thus the uORF of interest in PRNP mRNA would reduce PrP expression. 
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Figure 1. A cryptic exon in human PRNP. A) Human PRNP transcript structure in human 
brain. Top panels show GTEx29 v8 bulk RNA-seq coverage — mean (orange lines) and range 
(orange shaded area) across 13 brain regions. Coverage depth for exons 1 and 2 is normalized 
to the max for exon 1; depth for exon 3 is normalized to the max for exon 3. ATGs representing 
candidate upstream open reading frames and the canonical open reading frame are shown as 
blue triangles. Ensembl GRCh38.p14 annotated transcripts are shown below, canonical in 
black, alternatives in gray. B) Comparison of orthologous exon 2 sequence in mouse, hamster, 
and human. Hamster inclusion percentage from ref 24. C) Comparison of PRNP canonical and 
exon 2 novel ATG Kozak contexts with a sequence logo of human initiation sites (see Methods). 
D) Relative strength of canonical and novel PRNP ORFs in context. Shown for comparison are 
histograms of translational efficiency of all 65,536 (4^8) possible Kozak contexts (yellow) and of 
all 18,784 actual human canonical ORF Kozak contexts (blue), expressed as a percentage of 
the translation of the most efficient Kozak context, TTCATCATGCA, according to data from 
Noderer et al27.  E) Annotated sequence of the PRNP 5’UTR if exon 2 were included. Frame is 
relative to the canonical ORF, and percentile indicates strength of the Kozak context as a 
percentile of all possible Kozak sequences, using rankings from ref 27. F) Multiple alignment of 
PRNP exon 2 sequences known to be constitutively or variably included in mRNA from 
mouse22, hamster24, and sheep23 versus all orthologous sequences in eutherian mammals that 
contain ATGs. ATGs are shown in blue, splice site variants absent from mouse, hamster, or 
sheep are shown in orange. A full alignment including all eutherian mammals is shown in Figure 
S1. 
 
To test this hypothesis, we first sought to generate a PRNP minigene system to support facile 
splice site manipulation, transfection, and screening in cell culture. A 4.8 kb minigene lacking 
most of intron 1 yielded no detectable PrP expression in HEK293 cells by Western blot (Figure 
S2). A 6.5 kb construct retaining all of intron 1 and only the first and last 500 bp of intron 2 
(Figure 2A) expressed robustly, and was used for all subsequent experiments. Codon 
optimization of exon 3 allowed for qPCR primer/probe pairs to discriminate minigene PRNP 
RNA from endogenous PRNP RNA (Figure 2B). 
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Figure 2. Design of PRNP minigene and primer pairs. A) Diagram of minigene versus human 
reference sequence. Intronic sequence upstream of exon 2 and 500 bp on either end of the 
intronic sequence downstream of exon 2 are included. B) Design of primer/probe pairs used to 
interrogate splicing of the minigene. Note that codon optimization in exon 3 (underlines) enables 
these pairs to discriminate the minigene from endogenous PRNP in HEK293 cells. 
 
 
Using this 6.5 kb minigene as a template, we designed a panel of splice site modifications that 
we hypothesized would strengthen exon 2 inclusion in the context of human PRNP (Figure 3A). 
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exon 1-3 primer/probe pair

5’GGCGCCGCGAGCTTCTCCTCTCCTCACGACCGAGGCAGgtaaacgcccggggtgggagga ...
3’CCGCGGCGCTCGAAGAGGAGAGGAGTGCTGGCTCCGTCcatttgcgggccccaccctcct ...

5’... tcattttgcagAGCAGTCATTATGGCTAATCTGGGCTGTTGGATGCTGGTCCTGTTCGTC
3’... agtaaaacgtcTCGTCAGTAATACCGATTAGACCCGACAACCTACGACCAGGACAAGCAG

5’GCTACCTGGTCCGATCTGGGGCTGTGCAAAAAACGGCCTAAACCTGGCGGCTGGAACACCGGAG
3’CGATGGACCAGGCTAGACCCCGACACGTTTTTTGCCGGATTTGGACCGCCGACCTTGTGGCCTC

exon 1-2 primer/probe pair

5’GGCGCCGCGAGCTTCTCCTCTCCTCACGACCGAGGCAGgtaaacgcccggggtgggagga ... 
3’CCGCGGCGCTCGAAGAGGAGAGGAGTGCTGGCTCCGTCcatttgcgggccccaccctcct ... 

5’ttgttgtttttaagGACTCCTGAATATTTTTCAAAACTGAACAATTTCAGCCATGTCTGAGCTT
3’aacaacaaaaattcCTGAGGACTTATAAAAAGTTTTGACTTGTTAAAGTCGGTACAGACTCGAA

5’TCCGTCTTCCTGGAGGCACAAATCTAGTTTAGCTGAACCACAACAGATTgtacatatcct ...
3’AGGCAGAAGGACCTCCGTGTTTAGATCAAATCGACTTGGTGTTGTCTAAcatgtatagga ...

exon 2-3 primer/probe pair

5’AAATCTAGTTTAGCTGAACCACAACAGATTgtacatatcct ... tcattttgcagAGCAGTC
3’TTTAGATCAAATCGACTTGGTGTTGTCTAAcatgtatagga ... agtaaaacgtcTCGTCAG

5’ATTATGGCTAATCTGGGCTGTTGGATGCTGGTCCTGTTCGTCGCTACCTGGTCCGATCTGGGGC
3’TAATACCGATTAGACCCGACAACCTACGACCAGGACAAGCAGCGATGGACCAGGCTAGACCCCG

5’TGTGCAAAAAACGGCCTAAACCTGGCGGCTGGAACACCGGAGGCAGCAGGTACCCTGGACAGGG
3’ACACGTTTTTTGCCGGATTTGGACCGCCGACCTTGTGGCCTCCGTCGTCCATGGGACCTGTCCC

UNDERLINED nucleotides 
     indicate optimized codons
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These included 1) installation of the consensus strongest31 human splice donor and acceptor 
(“canonical ss”; 6 nucleotide changes required), 2) installation of the mouse Prnp exon 2 splice 
sites (“mouse ss”; 5 changes required), 3) conversion of the donor +5 site from A to G, as this 
site shows the strongest nucleotide preference of any extended splice site position26 (D+5, 
A>G); 4) conversion of the acceptor -3 site from A to C, to assess whether this single change 
could mimic the effect of installing the consensus human splice site (A-3, A>C); and 5) 
conversion of the acceptor -4 site from T to A, to assess whether this single change could mimic 
the effect of installing the mouse Prnp splice site (A-4, T>A). 
 
 

 
Figure 3. Inclusion of exon 2 lowers PrP expression. A) Sequence variants of minigene 
tested in HEK293 cells. B-D) Expression of (B) exon 1-3 (n = 5-12 transfected wells/variant), (C) 
exon 1-2 (n = 6-12 transfected wells/variant), and (D) exon 2-3 (n = 6-10 transfected 
wells/variant) junctions in minigene mRNA for each variant transfected into HEK293 cells. 
Normalized to the template minigene for exons 1-3 and normalized to the highest-expressing 
variant for exons 1-2 and 2-3. Note that codon optimization in exon 3 enables discrimination 
from endogenous PRNP. E) Immunoblot (POM2 primary antibody32 of PrP expression in 
HEK293 cells transfected with each variant. F) Quantification of PrP expression from ≥4 
immunoblots per construct, n = 4-8 transfected wells/variant. 
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Each mutant was separately transfected into HEK293 cells alongside the parent minigene 
construct and empty vector and GFP transfection controls and analyzed by qPCR. Each 
primer/probe set (Figure 2B) was designed to amplify only if the targeted exons are adjacent. In 
keeping with these expectations, the empty vector and GFP controls yielded negligible signal for 
all primer pairs; trace amplification of exon 1-3 may reflect imperfect allele specificity, as only 2 
bases differ from endogenous PRNP in the exon 3 codon-optimized primer. The parent 
minigene yielded PCR product for exon 1-3 but not for exon 1-2 or 2-3, reflecting the baseline 
exclusion of cryptic exon 2 in a human system.  
 
All 5 splice site mutants appeared to reduce the amount of normally spliced PRNP RNA, as 
measured by the exon 1-3 primer pair, with the change being significant for 4 mutants (Figure 
3B). The two mutants yielding the greatest reduction — the canonical ss and mouse ss mutants 
— showed a corresponding increase in the presence exon 1-2 and 2-3 junctions (Figure 3C-D). 
For all other constructs, exon 2 remained undetectable, or nearly so, by these primer/probe 
sets. Note that the results for exons 1-2 and 2-3 are normalized to the highest value obtained for 
any mutant; 100% does not necessarily mean 100% exon 2 inclusion. 
 
Immunoblots on cell lysates revealed apparent reductions in PrP for all mutants tested (Figure 
3E-F). The canonical ss mutant yielded 33% and the mouse ss mutant 48% of the PrP 
expression level of the parent minigene (Figure 3F). HEK293 cells express endogenous PrP, 
however, at ~15% the level achieved by transfection of the parent minigene (Figure 3E-F); 
adjusting for this floor yielded residual PrP expression of 22% and 38% for the canonical ss and 
mouse ss mutants, respectively. Across all mutants, PrP levels tracked closely with exon 1-3 
qPCR results, with significant reductions for mutants D+5, A>G and A-3, A>C despite the lack of 
detectable exon 1-2 and 2-3 junctions (Figure 3F, 3C, 3D). 
 
Discussion 
 
We find that splice site manipulation can modulate the level of PrP in a human cell system, 
reducing the levels of this disease-causing protein by 78% in the strongest condition tested. For 
the strongest mutants, which incorporated 5-6 nucleotide changes across the splice donor and 
acceptor sites, this reduction in protein level was observed in tandem with exon 2 inclusion at 
the mRNA level. This would be consistent with uORF-mediated translational repression, 
however, we cannot rule out that nonsense-mediated decay (NMD) may be at work, with the 
exon 1-2 and 2-3 qPCR simply picking up the small fraction of exon 2-including mRNA that has 
not yet been degraded. NMD was long held to require 50 bp of distance between the stop codon 
and the splice donor33, versus only 22 bp here, but data from protein-truncating variants in 
human tissues show this is not a hard-and-fast rule, and that distance from the splice donor is 
but one of many imperfect predictors of NMD34. Still, the evidence for NMD caused by uORFs in 
human genes is equivocal18,35. The single point mutants tested here reduced PrP and normal 
exon 1-3 splicing without yielding detectable exon 1-2 and 2-3 splicing. Thus, additional 
mechanisms not foreseen by our initial hypothesis could be operative. One possibility is that 
these mutants cause inclusion of exon 2 but also retention of a portion of intronic sequence, 
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causing the exon 1-2 and 2-3 qPCR to not amplify, while still resulting in NMD and/or uORF-
mediated translational repression. 
 
Our study has several limitations. The battery of splice manipulations that we tested was limited, 
leaving open the possibility that other splice site changes could yield more dramatic results. As 
our experiments were limited to human cell culture, in vivo relevance was not demonstrated. 
Most importantly, the genetic engineering used to establish this proof of concept does not offer 
a direct path to therapeutic application. 
 
In principle, several therapeutic modalities could be deployed to modulate PRNP splicing36,37. 
Antisense oligonucleotides (ASOs) are a well-established modality capable of causing exon 
inclusion38, but may be unlikely to be deployed towards this end: given the desired mechanism 
of reducing PRNP expression, RNAse H1 ASOs are likely to yield greater target suppression 
than splice-modulating ASOs. Adenine base editors have been successfully deployed to disrupt 
splice sites39,40, however, the single point mutants identified here had relatively modest effects 
on PrP expression. Instead, small molecule modulation of PRNP splicing is the most enticing 
possibility suggested by our results. PrP-lowering small molecules could have desirable 
pharmacologic properties, particularly in terms of distribution to deep brain structures less well-
reached by oligonucleotides41. Attempts to discover small molecules to bind PrP have been 
unsuccessful42, so splicing could offer a new mechanism for small molecule therapies in prion 
disease. Because PRNP does not share the preferred splice site motifs of any known splice-
modulating small molecule series10,12,14, discovery of a modulator would require a new screening 
effort.  
 
Despite these limitations, we are encouraged to discover a novel mechanism by which PrP 
expression can be influenced. PrP’s role in prion disease is uniquely pivotal, as it serves as 
protein-only pathogen, amplification substrate, and mediator of neuronal neurotoxicity. The 
therapeutic benefit of PrP lowering has been shown across multiple prion strains4, both through 
genetic reduction and by use of antisense oligonucleotides, and evidence for tolerability is 
provided by multiple nonhuman species as well as human genetics43–48. Given this clarity, PrP 
and its precursors are disease targets worthy of ongoingly creative angles of attack.  
 
 
Methods 
 
Kozak sequences 
Files were retrieved from the Matched Annotation from NCBI and EMBL-EBI (MANE) database 
(version 1.0) https://ftp.ncbi.nlm.nih.gov/refseq/MANE/MANE_human/release_1.0/ cDNA 
Transcript sequences from the MANE.GRCh38.v1.0.refseq_rna.fna.gz file were then filtered to 
only MANE Select transcripts and an 11-bp context surrounding the CDS start were extracted, 
excluding transcripts where a 11bp CDS context could not be retrieved, as in the case for a 
leaderless mRNA. To generate a sequence logo, these 11-bp sequences were then super-
imposed to align with each other and plotted using ggplot2 and the R package ggseqlogo using 
the bits method. To generate a histogram, the relative translational efficiencies of each 
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sequence were taken from Noderer et al27 and normalized to the most efficient Kozak 
sequence. 
 
Comparative genomic analyses 
PRNP sequences, and multiple alignments thereof, were obtained from UCSC Genome 
Browser49 (accessed September 6, 2023). Kozak sequence strength percentiles were obtained 
from the rank order among all possible Kozak sequences reported by ref 27. GTEx29 RNA-seq 
coverage data were obtained from UCSC Table Browser (accessed November 14, 2023). Exon 
1 and 2 in diagrams correspond to the canonical Ensembl transcript ENST00000379440.9. 
 
Cell culture and transfections 
HEK293 cells were maintained in DMEM/F-12 (Gibco, cat no. 11320033) supplemented with 1% 
Penicillin-streptomycin (Gibco, cat no. 15140163) and 10% FBS (Gibco, cat no. 16000044). For 
transfection, cells were plated in a 12-well or 96-well plate for protein or RNA analysis, 
respectively, and were allowed to adhere for 18 hours. Cells were then transfected using 
Lipofectamine 3000 transfection reagent (Invitrogen, cat no. L3000015) according to the 
manufacturer protocol. In short, lipofectamine 3000 reagent was diluted in Opti-MEM I reduced 
serum media (Gibco, cat no. 31985088) for a final mixture containing 3% lipofectamine 3000. In 
a separate tube, 1 μg (12- well plate) or 0.1 μg (96- well plate) DNA was mixed with 4% P3000 
reagent in Opti-MEM. The two tubes were slowly mixed then allowed to incubate at room 
temperature for 10 minutes before applying the mixture to the cell media. Transfection was 
incubated on cells for 48 hr before lysing cells. 
 
Plasmids 
Plasmid cloning was performed by Genscript using a modified version of pcDNA3.1(+). The 
CMV promoter was cloned out of the pcDNA3.1(+) backbone (addgene V790-20) by digesting 
the vector with NruI and NheI. The human PGK promoter (addgene 82579) was cloned into the 
backbone, creating pcDNA3.1(+)-hPGK. The minigene was synthesized with codon optimized 
exon 3, then was ligated into pcDNA3.1(+)-hPGK between NheI and EcoRI.  
 
Western blot analysis 
Following the 48 hr transfection, cells were washed thoroughly with ice- cold PBS then were 
lysed in 0.2% CHAPS containing cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail 
(Sigma, cat no. 4693159001). Protein concentration was determined using a DC protein assay 
kit (Bio-rad, cat no. 5000112). NuPAGE 4-12%, Bis-Tris, mini protein gels (Invitrogen, cat no. 
NP0323BOX) were loaded with 10 μg total protein for each sample and run at 180 V in 1x MES 
buffer (Thermo, cat no. NP0002). Gels were transferred to PVDF membranes using an iBlot 2 
device (iBlot™ 2 Transfer Stacks, PVDF, mini, Thermo, cat no. IB24002), 20 V, 7 minutes. 
Membrane was then cut right under 55 kDa band before blocking with LICOR TBS blocking 
buffer (LICOR, cat no. 927-60001), 1 hr at room temperature. Primary antibodies were diluted in 
LICOR TBS blocking buffer + 0.2% Tween-20 (Teknova, cat no. T0710) and incubated at 4°C 
overnight: ⍺-Tubulin (Invitrogen, cat no. A11126), final 100 ng/μL; POM2 (Millipore, cat no. 
MABN2298), final 50 ng/μL; 6D11 (BioLegend, cat no. 808001), final 2 μg/μL. Membranes were 
washed in 1x TBST then incubated in secondary antibody (IRDye® 800CW Goat anti-Mouse 
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IgG, LICOR, cat no. 926-32210) diluted in LICOR TBS blocking buffer + 0.2% Tween-20 and 
incubated at room temperature for 1 hr. Membranes were again washed with 1x TBST then 
scanned on a LICOR Odyssey CLx Infrared Imaging System. Blots were analyzed in Fiji50.  
 
qPCR 
Following the 48 hr transfection, cells were lysed using the Cells-to-CT 1-step Taqman Kit 
(Invitrogen, cat no. A25602) using the manufacturer protocol. In short, media was aspirated, 
each well was washed with 200 μL of ice cold 1x PBS then wash was completely aspirated. 
Room temperature DNase/Lysis solution (0.5 μL: 50 μL) was added to the cells then plate was 
put on a shaker for 5 minutes. Finally, 5 μL of room temperature stop solution was added to the 
cells then plate was put back on the shaker for 2 minutes before moving the plate to ice. RT-
PCR samples were prepared using Taqman 1-Step qRT-PCR master mix and Taqman gene 
expression assays for human TBP (Invitrogen, cat no. Hs00427620_m1). Custom primers and 
probes were ordered from Genscript to quantify the different splice variants (see Table S1 for 
sequences and Figure 2 for alignment on the minigene sequence). Samples were run on a 
QuantStudio 7 Flex system (Applied Biosystems) using the following cycling conditions: 
Reverse transcription (RT) 50°C, 5 min; RT inactivation/initial denaturation 95°C, 20 sec; 
Amplification 95°C, 3 sec, 60°C, 30 sec, 40 cycles. Each biological sample was run in duplicate 
and the level of all targets were determined by ΔΔCt whereby results were first normalized to 
the housekeeping gene TBP and then to the wild-type template (exon 1-3) or the mouse ss 
(exon 1-2 and 2-3), depending on the primer pair used. 
 
Experimental design and statistical analysis 
All data was generated from at least 3 independent transfections, N are as indicated in figure 
legends. Throughout, all error bars in figures represent 95% confidence intervals. All data were 
compared with an ordinary one-way ANOVA and Dunnett’s multiple comparison test, with a 
single pooled variance. P values less than 0.05 were considered nominally significant. In plots, 
**, p < 0.01 and ****, p < 0.0001. Intron/exon diagrams were plotted in R, qPCR analysis was 
performed in Google Sheets, and barplots and statistical analyses were performed in Graphpad 
Prism. Raw data, Prism files, and source code will be made available at 
https://github.com/ericminikel/cryptic_exon 
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SUPPLEMENT 
 
Supplementary tables 1-6 provided as a separate Excel file. 

 
Figure S1. Multiple alignment of PRNP exon 2 orthologous sequence for all available 
eutherian mammals. As in Figure 1D, but including eutherian mammals without ATGs in exon 
2. Lesser Egyptian jerboa is excluded because orthologous sequence was identified for only 
part of exon 2. 
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Figure S2. Alternative minigene construct tested in cells. A) Comparison of human 
reference sequence with an alternative “minigene 1” containing only 500 bp at either end of 
intron 1, and the “minigene 2” used throughout the main text of this manuscript. B) Immunoblot 
failing to detect any expression of minigene 1 in transfected HEK293 cells. Primary antibody: 
6D11, see Methods. 
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